If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+18x-48=0
a = 16; b = 18; c = -48;
Δ = b2-4ac
Δ = 182-4·16·(-48)
Δ = 3396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3396}=\sqrt{4*849}=\sqrt{4}*\sqrt{849}=2\sqrt{849}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{849}}{2*16}=\frac{-18-2\sqrt{849}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{849}}{2*16}=\frac{-18+2\sqrt{849}}{32} $
| 66=6(2-3n) | | 38+7x+1=10x+9 | | 0=3x^2-9x^2 | | 38+7x+1+x=180 | | -97=6(2+2r)+6r | | 3m+5=4m−8 | | 2^x=0.8 | | 180=28s+30 | | -1/8x=-1/2 | | S²-2s-35=0 | | 180=67b+39 | | |12n+14|=0 | | -3+7x= | | 180=138+6x | | 3(z+14)^2-30=720 | | 3(2+6m)=114 | | 15y-48=10y+7 | | 7x-12=3x+28=120 | | 3(z+4)^2-30=720 | | 180=84+-1w | | -2x=13=-7x+28 | | 3(6x^2+2x-3)+2(2x^2-3x+2)=0 | | X+5+2x=90 | | 5×+4y=-4 | | 6j-5j+3j+j=20 | | 4x+9=16-3× | | 180=47+7t | | 6-13x=10(2x+8)+62+7x | | (3x+32)=180 | | 180=138+3b | | 11x+68=2x+5 | | 1+x+x+x+x+x=247857 |